## FAST HIGH VOLTAGE TRANSISTOR SWITCHES

These MOSFET switches are designed for high voltage DC applications with alternating voltage polarities and for general AC and high frequency applications. The ability to switch alternating voltages and currents arises from a special circuit topology which uses two anti-serially connected transistors in every stage of the MOSFET stack (please refer to Fig. 1). The anti-serial connection of the MOSFET's implicates also the anti-serial connection of their intrinsic diodes. Since one of the two anti-serial diodes is always blocking during the MOSFET's off-state, the switch reliably stays off at any polarity change or even with high frequency alternating current. Of course the maximum rate of polarity changes per second (the maximum AC frequency) is limited by the reverse recovery behavior of the intrinsic MOSFET diodes. Without additional measures, a load current frequency of up to 1 MHz is possible. Higher input frequencies require a fast free-wheeling diode (available as option I-FWDN). In this way it is possible to increase the maximum input frequency up to 10 MHz , at least at moderate load currents.

When the MOSFET's are in the on-state, both diodes are shorted by their related MOSFET. It is important to know, that any load-current related voltage drop over the additional switching path is limited by the forward voltage of the shorted intrinsic (serial) diode. This effect reduces the power loss of the additional MOSFET switching path significantly and must be considered in the total power dissipation calculation. Since the intrinsic (serial) diode is shorted by the static on-state resistance of their related parallel MOSFET, the forward voltage drop of the serial diode can never appear as a residual voltage across the switching path. That makes BEHLKE AC switches ideal for many applications with the highest demands on voltage stability (e.g. accelerators, mass spectrometers and other analytical instruments).

AC switch designs with MOSFET require twice the number of power semiconductors compared to a DC MOSFET switch. On the other hand, AC switches can reduce the overall system costs and high voltage wiring efforts dramatically, if, for example a relay-based polarity change unit becomes unnecessary due to the AC capability of the pulser switch.
The AC switches described here are based on the BEHLKE LC2 technology, which represents the state of the art in high voltage MOSFET stacks. Switches of the LC2 series have an extremely low coupling capacitance to the control respectively ground and are designed to withstand extreme $\mathrm{dv} / \mathrm{dt}$ transients from the power supply.

Like all other BEHLKE solid-state switches, the Series LC2-AC switches are also triggered by a positive going control signal of 3 to 6 Volts at the control input (pin1). The shielded input is terminated by an internal 100 Ohm resistor. The on-time may simply be controlled by the input control pulse width and can range from 200 ns to infinity. The control electronics of the switching module requires an auxiliary supply of +4.75 to +9.0 VDC (pin 5). To ensure a safe off-state of the switch, the auxiliary supply should be permanently present when high voltage is applied, especially in the case of possible voltage fluctuations or fast transients at the high voltage input.

An interference-resistant driver and control circuit provides signal conditioning, auxiliary voltage monitoring, frequency limitation, and temperature protection. Any false operating condition (under voltage, over frequency or over temperature) will result in immediate switch deactivation and a TTL-compatible fault signal "L" (0V) will be generated at the fault signal output (pin 3), which is logically high "H" (approx. 4.5 VDC) under normal operating conditions. All operating states (pulse, on, off, fault) are indicated by LED's.
The switch control has also an inhibit input (pin 2), which can be used by external circuits such as over current detectors or for any other safety purpose. The inhibit input is activated by a logical "L" (0V). If the BEHLKE PU2 liquid cooling system is used, then the alarm contact of the PU2 unit can be simply connected between inhibit (pin 2 ) and GND (shield / pin 5).

The high frequency burst operation ( $>10$ pulses $/ 100 \mu \mathrm{~s}$ ) requires the option "HFB" (High Frequency Burst) respectively "I-HFB" (Integrated High Frequency Burst), depending on the number of pulses to be generated. In case of option HFB, external buffer capacitors must be connected to the internal driver circuitry. A continuous high frequency operation above the specified maximum switching frequency requires the option "HFS" (High Frequency Switching). With option HFS, two external supply voltages are connected to increase the power capability of the internal switch driver for higher switching frequencies. Those external voltages are +15 VDC and +380 to 480 VDC, depending on switch model. The +5 VDC auxiliary supply is not required then.
Due to high galvanic isolation, the switches can be operated in floating circuits or in high-side switching applications without any additional isolation transformer or optical coupler. Several housing, cooling and connector options are available to meet individual design requirements. Please refer to product survey "C5 Variable On-Time, AC MOSFET" (http://www.behlke.com/separations/separation_c5.htm) or consult BEHLKE for more details.
H.S 301-10-AG+/-30 kV, 100 A H.S 504-10-AC+/-50 kV, 100 A H.S 701-10-AG +/-70 kV, 100 A

+ П MOSFET AC SWITCHES - polarity change made easy


Test Circuit (High-Side Switch)


Technical Data


## Recommended Options:

Option LP
Option S-TT Option MIN-ON Option MIN-OFF Option HFB Option HFS Option DLC - X.X Option TH
Option CR

Low Pass: Low pass filter at the control input. Propagation delay time will be increased by $\sim 200 \mathrm{~ns}$. Improved noise immunity and less critical wiring in high speed applications. Soft Transition Time: Reduced switching speed (approx. $50 \%$ slower) for less noise emission and simplified EMC design
Minimum On-Time: Individually increased "Minimum On-Time" to avoid unwanted triggering by input noise during this time. Please indicate the demanded ton(min) with order. Minimum Off-Time: Individually increased "Minimum Off-Time" to avoid unwanted triggering by input noise during this time. Please indicate the demanded toff(min) with order. High Frequency Burst: Improved burst capability of driver by means of external buffer capacitors. Recommended for burst operation with >100 pulses within a burst of <100 $\mu \mathrm{s}$ duration High Frequency Switching: Connector for additional auxiliary voltages ( +12 VDC and +350 VDC to +450 VDC, model depending). Necessary for operation above standard $f_{\text {(max) }}$. Direct Liquid Cooling: Internal liquid channel in direct contact with the power semiconductors. Excellent cooling method for very high voltages. GALDEN® \& non-conductive liquids only Tubular Housing: Self-supporting axial housing. Attachment \& HV connection by M12 bolts at the tube ends. Housing made of POM. Radiation proof plastic materials on request. Corona Rings: Removable rings to control the electrical field at the HV connector bolts. Only in connection with Option TH .

